Pengaruh Temperatur dan Jenis Reduktor Terhadap Persen Metalisasi dan Persen Fe Hasil Reduksi Bijih Besi Kalimantan

  • Soesaptri Oediyani Jurusan Teknik Metalurgi, Universitas Sultan Ageng Tirtayasa, Cilegon-Banten
  • Murti Handayani
  • Anistasia Milandia Jurusan Teknik Metalurgi, Universitas Sultan Ageng Tirtayasa, Cilegon-Banten
Keywords: sponge iron, fixed carbon, iron ore, polyethylene (PE), percent metallization

Abstract

One of the natural resources that can be used as an alternative source of reductor is charcoal made from wood and coconut shell. In addition, plastic / polyethylene (PE) can also be used as an additional reducing agent, since PE has hydrogen and carbon chains that can decompose at high temperatures into hydrogen and carbon monoxide gases. Furthermore, in iron making process, temperature also plays an important role. Based on Chaudron diagram, iron ore will be reduced to sponge iron at temperatures above 750°C. Therefore, in this research, the variations of temperature were 800, 900 and 1000°C with 2 hours of reduction time. The raw material consists of briquettes made from a mixture of iron ore and reducing agents. The result of the research shows that the highest metallization is about 97,08% obtained at 1000°C by using coconut shell charcoal and additional of 7.4% PE. In this condition, Fe content in sponge iron is about 62.90%.

References

1. Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia. Jakarta: Kementerian ESDM, 2014.
2. Kementrian Perindustrian Republik Indonesia. Internet: bkti-pii.or.id/presentasi-roadmap-dan-pasar-baja/, 2015 [1 Oktober 2016].
3. Data Sumber Daya dan Cadangan Berdasarkan Data Pusat Sumber Daya Geologi (PSDG). Bandung: Kementerian ESDM, 2013.
4. Statistik Direktori Geologi dan Sumber Daya Mineral. Internet: http://www.dim.esdm.go.id, 2013 [15 Juni 2015].
5. Iman, Yayat. “Studi Penggunaan Reduktor Pada Proses Reduksi Pelet Bijih Besi Lampung Menggunakan Rotary Kiln UPT Balai Pengolahan Mineral Lampung”. 2012.
6. Pengkajian Teknologi Pertanian (BPTP) Riau. Internet: riau.litbang.pertanian.go.id, [12 Juli 2015].
7. Kustiarana, Willyandhika. “Pengaruh Waktu Reduksi dan Ukuran Pelet Campuran Bijih Besi Lampung- Arang Tempurung Kelapa terhadap Persen Metalisasi Besi Spons Menggunakan Rotary Kiln UPT. BPML LIPI”. Skripsi, UNTIRTA. Indonesia. 2013.
8. Ermawati, Rahyani. “Konversi Limbah Plastik Sebagai Sumber Energi Alternatif”. Jurnal Riset Industri, vol w, pp.257-263. Available: www.kemenperin.go.id/download/4722/Konversi-Limbah-Plastik-Sebagai-Sumber-Energi-Alternatif [28 April 2016].
9. W. F., Billmeyer. Textbook of Polymer Science, 3rd ed., Jhon Wiley & Son, Ed. New York: Mc-GrawHill, 1994, pp.203.
10. Terkel, Rosenqvist. Principles of Extractive Metallurgy. New York: McGraw-Hill, 1983, pp.512.
11. Adil Jamali, dan Muhammad Amin. “Pengolahan Bijih Besi Halus menjadi Hot Metal di Dalam Kupola”. Jurnal Kimia Indonesia, vol 1(2)., pp. 87-92, 2006.
12. Jensen and A. M., Bafeman. “Iron & Ferroalloy Metals in (ed) M.L.,” in Economic Minerals Deposits. 1981, pp. 392.
13. Wahyudi, Utomo. Diktat Dapur dan Bahan Bakar. Cilegon: Fakultas Teknik Universitas Sultan Ageng Tirtayasa, Cilegon, 2006.
14. Dadang, Hidayat. “Reduksi Bijih Besi Laterit dari Bayah Provinsi Banten dengan Reduktor Batubara”. MA Thesis, IPB, 2009.
15. Anonim. “Manfaat Arang Kayu”. Internet: www.selingkaran.com, 2015 [12 Juni 2016].
16. A., Kurniawan. “Mengenal Kode Kemasan Plastik yang Aman dan Tidak”. Internet: www.selingkaran.com, 2012 [12 Juni 2016].
17. El-Geassy AHA et al. “Reduction Kinetics and Catastrophic Swelling of MnO2-doped Fe2O3 Compacts with CO at 1073–1373 K”. ISIJ International, vol. 47, pp. 377–385, 2007.
18. H. U., Ross. “Direct Reduced Iron Technology and Economics of Productions and Use” in Physical Chemistry, 3rd ed., Ed. Warrendale: The Iron and Steel Society of AIME, 1980, pp. 19-25 & 26-34.
19. Stephenson L., Robert. “Direct Reduced Iron Technology and Economics of Productions and Use”. Ed. Warrendale: The Iron and Steel Society of AIME, pp. 30, 1980.
20. A. K., Biswas. Principles Of Blast Furnace Ironmaking. Brisbane, Australia: Gootha Publishing House, pp. 203, 1981.
21. Sidney, Avner. Introduction to Physical Metallurgy. New York: McGraw-Hill, pp. 305, 1964.
22. T. Murakami and E. Kasai. “Reduction Mechanism of Iron Oxide – Carbon Composite With Polyethylene at Lower Temperatur”. ISIJ International, vol. 51, pp. 9 -13, 2011.
23. T. Matsuda, et al., “Utilization of Waste Plastic for The Production of Metallic Iron Hydrogen and Carbon Monoxide without Generating Carbon Dioxide”. ISIJ International, vol. 48, pp. 1186-1196, 2008.
24. Ueki, Y., Ohno, K., Maeda. T., Nishioka, K., and Shimizu, M. “Reaction Behaviour during Heating Waste Plastic Materials and Iron Oxide Composites”. ISIJ International, vol. 48, pp. 1670-1675,2008.
25. K. Nishioka, et al., “Gasification and Reduction Behaviour of Plastic and Iron Ore Mixtures by Microwaves Heating”. ISIJ International, vol. 47, pp. 602-207, 2007.
26. Dankwah, J. R., Amoah, T., Dankwah, J., and Fosu, A. Y. “Recycling Mixed Plastic Waste as Reductant in Iron Making”. ISIJ International, vol. 15, pp. 73-80,. 2015.
Published
2018-08-20
Section
Artikel Ilmiah (Hasil Penelitian)